Discrete Mathematics

Lecture 04

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence

Benha University

Spring 2023

Announcement

كلية الحاسبات والذكاء الإصطناعي

$$
\begin{gathered}
\text { Quiz (1) } \\
\text { In Lecture } 5 \\
12 / 3 / 2023
\end{gathered}
$$

Covers: Lec 1, 2, and 3

Chapter 2: Basic Structures

كلية الحاسبات والذكاء الإصطناعي

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

Functions (1/21)

Function

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

Functions (2/21)

Function

Assignment of grades in a discrete mathematics class.

Functions (3/21)

The Function $f: A \rightarrow B$

The function f maps A to B.

Functions (3/21)

The Function $f: A \rightarrow B$

Domain: A
Co-Domain: B
$f(a)=b$
b is the image of a a is a preimage of b

The range, or image, of f

The function f maps \boldsymbol{A} to B. is the set of all images of elements of A.

Functions (4/21)

The Function $f: A \rightarrow B$

Domain $=\{a, b, c, d, e\}$
Co-Domain $=\{1,2,3,4,5,6,7\}$
Range $=\{1,3,4,5,7\}$

Functions (9/21)

كلية الحاسبات والذكاء الإصطناعي

One-to-One function (injective)

A function f is said to be one-to-one, or injective,
if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f.

Functions (9/21)

One-to-One function (injective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=3 \\
& f(c)=7 \\
& f(d)=4 \\
& f(e)=5
\end{aligned}
$$

Functions (9/21)

NOT One-to-One function (Not injective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=1 \\
& f(c)=7 \\
& f(d)=4 \\
& f(e)=5
\end{aligned}
$$

Functions (10/21)

```
كلية الحاسبات والذكاء الإصطناعي
```


onto function (surjective)

A function f from A to B is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.

Functions (10/21)

onto function (surjective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=1 \\
& f(c)=4 \\
& f(d)=2 \quad \\
& f(e)=3 \quad \text { Co-Domain }=\{1,2,3,4\} \\
& \quad \text { Range }=\{1,2,3,4\}
\end{aligned}
$$

Functions (10/21)

NOT onto function (Not surjective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=1 \\
& f(c)=4 \\
& f(d)=1 \quad \\
& f(e)=3 \quad \text { Co-Domain }=\{1,2,3,4\} \\
& \\
& \text { Range }=\{1,3,4\}
\end{aligned}
$$

Functions (11/21)

One-to-one correspondence (bijection)

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

Functions (11/21)

One-to-one correspondence (bijection)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=3 \\
& f(c)=5 \\
& f(d)=2 \\
& f(e)=4 \quad \begin{array}{l}
\text { Co-Domain }=\{1,2,3,4,5\} \\
\text { Range }=\{1,2,3,4,5\}
\end{array}
\end{aligned}
$$

Functions (11/21)

NOT One-to-one correspondence (Not bijection)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=3 \quad \text { NOT one-to-one } \\
& f(c)=5 \quad \text { NOT onto } \\
& f(d)=1 \\
& f(e)=4 \quad \begin{array}{l}
\text { Co-Domain }=\{1,2,3,4,5\} \\
\text { Range }=\{1,3,4,5\}
\end{array}
\end{aligned}
$$

Functions (11/21)

NOT One-to-one correspondence (Not bijection)

$$
\begin{array}{ll}
f(a)=1 & \\
f(b)=2 & \text { Onto } \\
f(c)=3 \quad \text { NOT one-to-one } \\
f(d)=1 \\
f(e)=4 \begin{array}{l}
\text { Co-Domain }=\{1,2,3,4\} \\
\\
\text { Range }=\{1,2,3,4\}
\end{array}
\end{array}
$$

Functions (11/21)

NOT One-to-one correspondence (Not bijection)

$$
\begin{array}{lr}
f(a)=1 \\
f(b)=3 & \\
f(c)=5 & \text { One-to-one } \\
f(d)=2 & \\
& \text { NOT onto } \\
& \text { Co-Domain }=\{1,2,3,4,5\} \\
& \quad \text { Range }=\{1,2,3,5\}
\end{array}
$$

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

NOT One-to-one

Onto

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

Functions (12/21)

كلية الحاسبات والذكاء الإصطناعي

Examples

$$
\boldsymbol{A} \quad \rightarrow \quad B
$$

NOT a function

 from A to B
Functions (13/21)

Examples

Determine whether the function $f(x)=x+1$ from the set of integers to the set of integers is one-to-one.

Functions (13/21)

كلية الحاسبات والذكاء الإصطناعي

Examples (Answer)

Determine whether the function $f(x)=x+1$ from the set of integers to the set of integers is one-to-one.
$f(a)=a+1$ and $f(b)=b+1$
$f(x)$ is one-to-one (if $f(a)=f(b)$ and a equal b then).

$$
\begin{aligned}
a+1 & =b+1 \\
a & =b
\end{aligned}
$$

$\therefore f(x)$ is one - to - one

Functions (14/21)

Examples

Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one.

Functions (14/21)

Examples (Answer)

Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one.
$f(a)=a^{2}$ and $f(b)=b^{2}$
$f(x)$ is one-to-one (if $f(a)=f(b)$ and a equal b then).

$$
\begin{aligned}
a^{2} & =b^{2} \\
\pm a & = \pm b
\end{aligned}
$$

a may be not equal b
$\therefore f(x)$ is NOT one - to-one

Functions (15/21)

Inverse Functions

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by $\boldsymbol{f}^{-\mathbf{1}}$. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

Functions (15/21)

كلية الحاسبات والذكاء الإصطناعي

Inverse Functions

Functions (16/21)

Invertible

A one-to-one correspondence is called invertible because we can define an inverse of this function. A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Functions (17/21)

كلية الحاسبات والذكاء الإصطناعي

Invertible - Example

Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2$, $f(b)=3$, and $f(c)=1$. Is f invertible, and if it is, what is its inverse?

Functions (17/21)

Invertible - Example

Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2$, $f(b)=3$, and $f(c)=1$. Is f invertible, and if it is, what is its inverse?

Answer:

The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1)=c, f^{-1}(2)=a$, and $f^{-1}(3)=b$.

Some Important Functions (1/4)

Floor function $y=\lfloor x\rfloor$

Some Important Functions (2/4)

كلية الحاسبات والذكاء الإصطناعي

Ceiling function $y=\lceil x\rceil$

Some Important Functions (3/4)

كلية الحاسبات والذكاء الإصطناعي

Useful Properties

$$
\begin{aligned}
& \lfloor-x\rfloor=-\lceil x\rceil \\
& \lceil-x\rceil=-\lfloor x\rfloor \\
& \lfloor x+n\rfloor=\lfloor x\rfloor+n \\
& \lceil x+n\rceil=\lceil x\rceil+n
\end{aligned}
$$

Some Important Functions (4/4)

Examples

$$
\begin{aligned}
& \lfloor 0.5\rfloor= \\
& \lceil 0.5\rceil= \\
& \lceil 3\rceil=
\end{aligned}
$$

$$
\lfloor-0.5\rfloor=
$$

$$
\lceil-1.2\rceil=
$$

$$
\lfloor 1.1\rfloor=
$$

$$
\lfloor 0.3+2\rfloor=
$$

$$
\lceil 1.1+\lceil 0.51\rceil=
$$

Some Important Functions (4/4)

Examples-Answer

$$
\begin{aligned}
& {[0.5]=0} \\
& {[0.5\rceil=1} \\
& {[3\rceil=3}
\end{aligned}
$$

$$
\lfloor-0.5\rfloor=-[0.5]=-1
$$

$$
\lceil-1.2]=-1
$$

$$
\lfloor 1.1\rfloor=1
$$

$$
\lfloor 0.3+2\rfloor=2
$$

$$
\lceil 1.1+[0.51]=3
$$

Chapter 2: Basic Structures

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

Sequences (1/13)

Definition

- A sequence is a set of things (usually numbers) that are in order.
$>$ For example, $1,2,3,5,8$ is a sequence with five terms and $1,3,9,27,81, \ldots, 30, \ldots$ is an infinite sequence.
- We use the notation a_{n} to denote the image of the integer n. We call a_{n} a term of the sequence.
- We use the notation $\left\{a_{n}\right\}$ to describe the sequence.

$$
\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

Sequences (2/13)

Example

- Consider the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\frac{1}{n}
$$

The list of the terms of this sequence, beginning with a_{1}, namely,

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots
$$

Starts with

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

Sequences (3/13)

Geometric

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.

$2,10,50,250, \ldots$

Geometric - Example1

$$
1,-1,1,-1,1, \ldots ;
$$

$$
\begin{aligned}
& \left\{a r^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=1 \\
& r=-1
\end{aligned}
$$

Sequences (5/13)

كلية الحاسبات والذكاء الإصطناعي

Geometric - Example2

$2,10,50,250,1250, \ldots ;$

$$
\left\{a r^{n}\right\}, \quad n=0,1,2, \ldots
$$

$a=2$
$r=5$

Sequences (6/13)

كلية الحاسبات والذكاء الإصطناعي

Geometric - Example3

$$
\begin{aligned}
& 6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots \\
& \left\{a r^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=6 \\
& r=1 / 3
\end{aligned}
$$

Sequences (7/13)

كلية الحاسبات والذكاء الإصطناعي

Geometric - Example4

Find $a, r ?\left\{3 * 4^{n}\right\}, \quad n=0,1,2, \ldots$

$$
\begin{aligned}
& \left\{a r^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=3 \\
& r=4
\end{aligned}
$$

Sequences (8/13)

كلية الحاسبات والذكاء الإصطناعي

Geometric - Example5

Find $a, r ?\left\{3 * 4^{n}\right\}, \quad n=1,2,3, \ldots$

Sequences (8/13)

كلية الحاسبات والذكاء الإصطناعي

Geometric - Example5

Find $a, r ?\left\{3 * 4^{n}\right\}, \quad n=1,2,3, \ldots$

$$
\begin{aligned}
& a=12 \\
& r=4
\end{aligned}
$$

Sequences (9/13)

Arithmetic

An arithmetic progression is a sequence of the form

$$
a, a+d, a+2 d, \ldots, a+n d, \ldots
$$

where the initial term a and the common difference d are real numbers.

Sequences (10/13)

كلية الحاسبات والذكاء الإصطناعي

Arithmetic - Example1

$-1,3,7,11, \ldots$,
$\{a+n d\}, \quad n=0,1,2, \ldots$
$a=-1$
$d=4$

Sequences (11/13)

كلية الحاسبات والذكاء الإصطناعي

Arithmetic - Example2

$7,4,1,-2, \ldots$

$\{a+n d\}, \quad n=0,1,2, \ldots$
$a=7$
$d=-3$

Sequences (12/13)

Notes:

- Are terms obtained from previous terms by adding the same amount or an amount that depends on the position in the sequence?
- Are terms obtained from previous terms by multiplying by a particular amount?
- Are terms obtained by combining previous terms in a certain way?
- Are there cycles among the terms?

Sequences (13/13)

Fibonacci Sequence

The Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$,
is defined by the initial conditions $f_{0}=0, f_{1}=1$, and the recurrence relation

$$
\begin{aligned}
f_{n} & =f_{n-1}+f_{n-2} \\
\text { for } n & =2,3,4, \ldots
\end{aligned}
$$

$$
0,1,1,2,3,5,8, \ldots
$$

Summations (1/8)

Next, we introduce summation notation.
We begin by describing the notation used to express the sum of the terms

$$
a_{m}, a_{m+1}, \ldots, a_{n}
$$

from the sequence $\left\{a_{n}\right\}$. We use the notation

$$
\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad \text { or } \quad \sum_{m \leq j \leq n} a_{j}
$$

(read as the sum from $j=m$ to $j=n$ of a_{j})
to represent
Here, the variable j is called the index of summation

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

Summations (1/8)

$$
\sum_{j=m}^{n} a_{j}=\sum_{i=m}^{n} a_{i}=\sum_{k=m}^{n} a_{k}
$$

Here, the index of summation runs through all integers starting with its lower limit m and ending with its upper limit n. A large uppercase Greek letter sigma, \sum, is used to denote summation.

Summations (2/8)

Example 1

Express the sum of the first 100 terms of the sequence $\left\{a_{n}\right\}$, where $a_{n}=1 / n$ for $n=1,2,3, \ldots$

Summations (3/8)

Example 1

Express the sum of the first 100 terms of the sequence $\left\{a_{n}\right\}$, where $a_{n}=1 / n$ for $n=1,2,3, \ldots$

Answer

$$
\sum_{n=1}^{100} 1 / n
$$

Summations (4/8)

Example 2

What is the value of $\sum_{j=1}^{5} j^{2}$?

Summations (4/8)

Example 2

What is the value of $\sum_{j=1}^{5} j^{2}$?

Answer

$$
\begin{aligned}
\sum_{j=1}^{5} j^{2} & =1^{2}+2^{2}+3^{2}+4^{2}+5^{2} \\
& =1+4+9+16+25 \\
& =55
\end{aligned}
$$

Summations (5/8)

Example 3

What is the value of $\sum_{s \in\{0,2,4\}} s$?

Summations (5/8)

كلية الحاسبات والذكاء الإصطناعي

Example 3

What is the value of $\sum_{s \in\{0,2,4\}} s$?

$$
\sum_{s \in\{0,2,4\}} s=0+2+4=6
$$

Summations (6/8)

Example 4

Suppose we have the sum

$$
\sum_{j=1}^{5} j^{2}
$$

but want the index of summation to run between 0 and 4

$$
\sum_{j=1}^{5} j^{2}=\sum_{k=0}^{4}(k+1)^{2}
$$

It is easily checked that both sums are $1+4+9+16+25=55$.

Summations (7/8)

```
كلية الحاسبات والذكاء الإصطناعي
```


Double Summation

Find

Summations (8/8)

كلية الحاسبات والذكاء الإصطناعي

Double Summation

Find

$$
\sum_{i=1}^{4} \sum_{j=1}^{3} i j=\sum_{i=1}^{4}(i+2 i+3 i)
$$

$$
=\sum_{i=1}^{4} 6 i
$$

$$
=6+12+18+24=60
$$

Matrices (1/14)

Definition:

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called square.

Matrices (1/14)

Definition:

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called square.

The matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 2 \\ 1 & 3\end{array}\right]$ is a 3×2 matrix.

Matrices (2/14)

$\boldsymbol{m} \times \boldsymbol{n}$ matrix

Let m and n be positive integers and let

Matrices (3/14)

The (2, 1)th element or entry of \mathbf{A} is the element $\boldsymbol{a}_{\mathbf{2 1}}$, means $2^{\text {nd }}$ row and $1^{\text {st }}$ column of \mathbf{A}.

Matrices (4/14)

Matrix Arithmetic (Sum.)

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A}+\mathbf{B}$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i, j) th element. In other words, $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$.

Matrices (4/14)

Matrix Arithmetic (Sum.)

Note: matrices of different sizes can not be added.

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A}+\mathbf{B}$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i, j) th element. In other words, $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$.

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & 2 & -3 \\
3 & 4 & 0
\end{array}\right]+\left[\begin{array}{rrr}
3 & 4 & -1 \\
1 & -3 & 0 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
4 & 4 & -2 \\
3 & -1 & -3 \\
2 & 5 & 2
\end{array}\right]} \\
\mathbf{A} \\
\mathbf{A}+\mathbf{B}
\end{gathered}
$$

Matrices (5/14)

Matrix Arithmetic (Product/Multiplication)

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i k} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m k}
\end{array}\right]\left[\begin{array}{ccccc}
b_{11} & b_{12} & \ldots & b_{1 j} & \ldots \\
b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 j} & \ldots \\
\vdots & \vdots & & b_{2 n} \\
b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots \\
\vdots \\
\mathbf{b}_{k n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & c_{i j} & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]} \\
\mathbf{A}_{\boldsymbol{m} \boldsymbol{k}} \\
\mathbf{B} \mathbf{B B}_{\boldsymbol{k n}}=\mathbf{C}_{\boldsymbol{m} \boldsymbol{n}}
\end{gathered}
$$

Matrices (5/14)

Matrix Arithmetic (Product/Multiplication)

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i k} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m k}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 j} & \ldots & b_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots & b_{k n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & c_{i j} & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]} \\
\mathbf{A} \boldsymbol{m} \boldsymbol{k} \\
\mathbf{A B}=\mathbf{C}_{\boldsymbol{m n}}
\end{gathered}
$$

Matrices (6/14)

Example1 (1/2)

$$
\begin{gathered}
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2} \\
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2}
\end{gathered}
$$

$$
\frac{1}{1} \begin{aligned}
& 2 \\
& \hline 3
\end{aligned}\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right] \times\left[\begin{array}{rr}
1 & 2 \\
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]=[\quad]
$$

Matrices (6/14)

كلية الحاسبات والذكاء الإصطناعي

Example1 (2/2)

$$
\begin{gathered}
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2} \\
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2} \\
\begin{array}{c}
\boldsymbol{a}_{\mathbf{1}}=\mathbf{6} \\
=(\mathbf{1} \times \mathbf{1}+\mathbf{1} \times \mathbf{3}+\mathbf{2} \times \mathbf{1})
\end{array}
\end{gathered}
$$

Matrices (6/14)

كلية الحاسبات والذكاء الإصطناعي

Example1 (2/2)

$$
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2}
$$

$$
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2}
$$

Matrices (7/14)

كلية الحاسبات والذكاء الإصطناعي

Example2 (1/2)

Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] .
$$

Does $\mathbf{A B}=\mathbf{B A}$?

Matrices (7/14)

Example2 (2/2)

Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] .
$$

Solution: We find that

$$
\mathbf{A} \mathbf{B}=\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{B} \mathbf{A}=\left[\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right]
$$

Hence, $\mathbf{A B} \neq \mathbf{B A}$.

Matrices (8/14)

Identity matrix $\left(\mathbf{I}_{n}\right)$

The identity matrix of order n is the $n \times n$ matrix $\mathbf{I}_{n}=\left[\delta_{i j}\right]$, where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$.

$$
\mathbf{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3}
$$

A is an $m \times n$ matrix, we have

$$
\mathbf{A I}_{n}=\mathbf{I}_{m} \mathbf{A}=\mathbf{A}
$$

Matrices (9/14)

كلية الحاسبات والذكاء الإصطناعي

Powers of square matrices $\left(A^{r}\right)$

When \mathbf{A} is an $n \times n$ matrix, we have
 $$
\mathbf{A}^{0}=\mathbf{I}_{n}
$$
 $\mathbf{A}^{r}=\underbrace{\mathbf{A} \mathbf{A} \mathbf{A} \cdots \mathbf{A}}$.
 r times

Matrices (10/14)

Transpose of $A\left(A^{t}\right)$

Interchanging the rows and columns of \mathbf{A}

$$
\begin{array}{ccc}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]} \\
\mathbf{A} & {\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]} \\
\mathbf{A}^{\boldsymbol{t}}
\end{array}
$$

Matrices (10/14)

Transpose of $A\left(A^{t}\right)$

Interchanging the rows and columns of \mathbf{A}

A^{t}

Matrices (11/14)

Symmetric

A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{\boldsymbol{t}}$

$$
\left[\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} \\
\mathbf{A}
\end{array}=\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right.} & 1 \\
1 & 0
\end{array}\right]
$$

Matrices (11/14)

Symmetric

A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{\boldsymbol{t}}$

Matrices (12/14)

كلية الحاسبات والذكاء الإصطناعي

Zero-One Matrices

A matrix all of whose entries are either $\mathbf{0}$ or $\mathbf{1}$

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Matrices (13/14)

كلية الحاسبات والذكاء الإصطناعي

join and meet (Zero-One Matrices)

meet $\quad b_{1} \wedge b_{2}= \begin{cases}1 & \text { if } b_{1}=b_{2}=1 \\ 0 & \text { otherwise },\end{cases}$
join $\quad b_{1} \vee b_{2}= \begin{cases}1 & \text { if } b_{1}=1 \text { or } b_{2}=1 \\ 0 & \text { otherwise } .\end{cases}$

Matrices (14/14)

كلية الحاسبات والذكاء الإصطناعي

Example (1/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

Matrices (14/14)

كلية الحاسبات والذكاء الإصطناعي

Example (2/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

Solution: We find that the join of \mathbf{A} and \mathbf{B} is

$$
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

Matrices (14/14)

Example (3/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Solution:

The meet of \mathbf{A} and \mathbf{B} is

$$
\mathbf{A} \wedge \mathbf{B}=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Chapter 3: Algorithms

- Concept of Algorithms.
- Linear Search Algorithm.

Concept of Algorithms (1/12)

Introduction (1/2)

There are many general classes of problems that arise in discrete mathematics. For instance: given a sequence of integers, find the largest one; given a set, list all its subsets; given a set of integers, put them in increasing order; given a network, find the shortest path between two vertices.

Concept of Algorithms (1/12)

Introduction (2/2)

When presented with such a problem, the first thing to do is to construct a model that translates the problem into a mathematical context. To complete the solution, a method is needed that will solve the general problem using the model. Ideally, what is required is a procedure that follows a sequence of steps that leads to the desired answer. Such a sequence of steps is called an algorithm.

Concept of Algorithms (2/12)

Definition 1

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

MOHAMMED IBN MUSA AL-KHOWARIZMI
"Uzbekistan"

Concept of Algorithms (3/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Concept of Algorithms (4/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

$$
\begin{array}{|c|c|c|c|c|c|}
\hline 10 & 5 & 7 & 25 & 2 & 14 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\hline
\end{array}
$$

Concept of Algorithms (4/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

$$
\begin{array}{|c|c|c|c|c|c|}
\hline 10 & 5 & 7 & 25 & 2 & 14 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\max =25 \\
\operatorname{return} 25
\end{array}
$$

Concept of Algorithms (5/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Concept of Algorithms (5/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Concept of Algorithms (5/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Concept of Algorithms (5/12)

EXAMPLE

Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Concept of Algorithms (6/12)

Solution: We perform the following steps:

1. Set the temporary maximum equal to the first integer in the sequence. (The temporary maximum will be the largest integer examined at any stage of the procedure.)

Concept of Algorithms (7/12)

Solution: We perform the following steps:

1. Set the temporary maximum equal to the first integer in the sequence. (The temporary maximum will be the largest integer examined at any stage of the procedure.)

10

If you start from the left.

Concept of Algorithms (8/12)

Solution: We perform the following steps:
2. Compare the next integer in the sequence to the temporary maximum, and if it is larger than the temporary maximum, set the temporary maximum equal to this integer.

Concept of Algorithms (8/12)

Solution: We perform the following steps:

2. Compare the next integer in the sequence to the temporary maximum, and if it is larger than the temporary maximum, set the temporary maximum equal to this integer.

10

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

10

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

90

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

10

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

if $($ value $>10)$ then (temporary maximum $=$ value $)$

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

if $($ value $>25)$ then (temporary maximum $=$ value $)$

Concept of Algorithms (9/12)

Solution: We perform the following steps:

3. Repeat the previous step if there are more integers in the sequence.

if $($ value $>25)$ then (temporary maximum $=$ value $)$

Concept of Algorithms (10/12)

Solution: We perform the following steps:

4. Stop when there are no integers left in the sequence. The temporary maximum at this point is the largest integer in the sequence.

Stop

Concept of Algorithms (10/12)

Solution: We perform the following steps:

4. Stop when there are no integers left in the sequence. The temporary maximum at this point is the largest integer in the sequence.

$$
\text { return } 25
$$

Stop

Concept of Algorithms (11/12)

Solution: pseudocode

ALgORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers $)$
$\max :=a_{1}$
for $i:=2$ to n
if $\max <a_{i}$ then $\max :=a_{i}$
return $\max \{\max$ is the largest element $\}$

Concept of Algorithms (12/12)

PROPERTIES OF ALGORITHMS (1/2)

> Input. An algorithm has input values from a specified set.
$>$ Output. From each set of input values an algorithm produces output values from a specified set. The output values are the solution to the problem.
$>$ Definiteness. The steps of an algorithm must be defined precisely.
$>$ Correctness. An algorithm should produce the correct output values for each set of input values.

Concept of Algorithms (12/12)

PROPERTIES OF ALGORITHMS (2/2)

$>$ Finiteness. An algorithm should produce the desired output after a finite (but perhaps large) number of steps for any input in the set.
> Effectiveness. It must be possible to perform each step of an algorithm exactly and in a finite amount of time.
$>$ Generality. The procedure should be applicable for all problems of the desired form, not just for a particular set of input values.

Searching Algorithms (1/18)

Introduction (1/3)

Locate the value $=\mathbf{2}$ or determine that it is not in the list.

$$
\begin{array}{|c|c|c|c|c|c|}
\hline 10 & 5 & 7 & 25 & 2 & 14 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\hline
\end{array}
$$

Searching Algorithms (1/18)

Introduction (2/3)

Locate the value $=\mathbf{2}$ or determine that it is not in the list.

10	5	7	25	2	14
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}

The value 2 is founded in the location of a_{5}, namely, 5.

Searching Algorithms (1/18)

Introduction (3/3)

Locate the value $=\mathbf{2}$ or determine that it is not in the list.
Location

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
$$

6

Value | 10 | 5 | 7 | 25 | 2 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |

The value 2 is founded in the location of a_{5}, namely, 5 . return 5

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location 123

5
6

Value

You can start from the right, left, or middle.

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location 123

5
6

Value

If you start from the left.

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location
123
5
6

Value

Not found in the $1^{\text {st }}$ location

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location

5

Value

Not found in the $2^{\text {nd }}$ location

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location

345

Value

Not found in the $3^{\text {rd }}$ location

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location

5

Value

Not found in the $4^{\text {th }}$ location

Searching Algorithms (2/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 2 in this list

Location

5

Value

Founded in the 5 ${ }^{\text {th }}$ location return 5

Searching Algorithms (3/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location 123

5
6

Value

If you start from the left.

Searching Algorithms (3/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Not found in the $1^{\text {st }}$ location

Searching Algorithms (3/18)

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location 123

5

Value

Not found in the $2^{\text {nd }}$ location

Searching Algorithms (3/18)

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location
12
3
5

Value

Not found in the $3^{\text {rd }}$ location

Searching Algorithms (3/18)

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location
12
$3 \quad 4 \quad 5$

Value

Not found in the $4^{\text {th }}$ location

Searching Algorithms (3/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location

5

Value

Not found in the $5^{\text {th }}$ location

Searching Algorithms (3/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location

3
4
5

Value

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 10 & 5 & 7 & 25 & 2 & 14 \\
\hline
\end{array}
$$

Not found in the $6^{\text {th }}$ location

Searching Algorithms (3/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 99 in this list

Location

3
4
5

Value

10	5	7	25	2	14

Not Founded in all the list return 0

Searching Algorithms (4/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 33 in this list

Searching Algorithms (4/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Locate an element 33 in this list

return 7

Searching Algorithms (5/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

1. Comparing x and a_{1}. When $x=a_{1}$, return the location of a_{1}, namely, 1 .
2. When $x \neq a_{1}$, compare x with a_{2}. If $x=a_{2}$, return the location of a_{2}, namely, 2 .

Searching Algorithms (6/18)

Linear Search Algorithm (or Sequential Search)

3. When $x \neq a_{2}$, compare x with a_{3}, and so on. Continue this process, comparing x successively with each term of the list until a match is found, where the solution is the location of that term, unless no match occurs. If the entire list has been searched without locating x, return 0 .

Searching Algorithms (7/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location :=0
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0
$i=$

return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

algorithm 2 The Linear Search Algorithm.

x	i	n
5		3

\Rightarrow procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while $\left(i \leq n\right.$ and $\left.x \neq a_{i}\right)$
$i:=i+1$
if $i \leq n$ then location $:=i$
else location :=0
$i=\quad 1$
3
return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	1	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$\Longrightarrow i:=1$
while $\left(i \leq n\right.$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	1	3

procedure linear search x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)

$$
i:=i+1
$$

if $i \leq n$ then location $:=i$
else location := 0

$i=$| 1 |
| :---: |
| |
| 10 |

a_{1}
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	1	3

procedure linear search x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
True
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

$i=$| 1 |
| :---: |
| |
| 10 |

a_{1}
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while $\left(i \leq n\right.$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location := i
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$

> False
\Longrightarrow while $\left(i \leq n\right.$ and $\left.x \neq a_{i}\right)$
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
\Longrightarrow if $i \leq n$ then location $:=i$
else location :=0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
\Longrightarrow if $i \leq n$ then location $:=i$
alsolocation: $=0$

3
return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (8/18)

Example 1

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
5	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location := i
-nlso location: $=0$

3
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \} 2

Searching Algorithms (9/18)

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n

procedure linear search x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0
$i=$

return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

algorithm 2 The Linear Search Algorithm.

x	i	n
8		3

\Longrightarrow procedure linear search(x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0
$i=\quad 1$
3
return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

aLgorithm 2 The Linear Search Algorithm.

x	i	n
8	1	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$\Longrightarrow i:=1$
while $\left(i \leq n\right.$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	1	3

procedure linear search x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)

$$
i:=i+1
$$

if $i \leq n$ then location := i
else location := 0

$i=$| 1 |
| :---: |
| |
| 10 |

a_{1}
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	1	3

procedure linear search x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
True
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

$i=$| 1 |
| :---: |
| |
| 10 |

a_{1}
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	2	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while $\left(i \leq n\right.$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location := i
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	2	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
True
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	3	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location :=0

return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	3	3

procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location := i
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found $\}$

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	3	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
True
\Longrightarrow while $\left(i \leq n\right.$ and $\left.x \neq a_{i}\right)$
$i:=i+1$
if $i \leq n$ then location := i
else location := 0

return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0
$i=\quad 1$
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
if $i \leq n$ then location $:=i$
else location := 0
$i=\quad 1$
3
return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
False
$i=\quad 1$
3
while $\left(i \leq n\right.$ and $\left.x \neq a_{i}\right)$
$i:=i+1$
if $i \leq n$ then location $:=i$
else location :=0

return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
$i:=i+1$
\Longrightarrow if $i \leq n$ then location $:=i$
else location :=0
$i=\quad 1$
3
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
False $i=i+1$
if $i \leq n$ then $\frac{1}{\text { lontion }}:=i$
else location := 0
$i=\quad 1$
3
return location\{location is the subscript of the term that equals x, or is 0 if x is not found \}

Searching Algorithms (9/18)

كلية الحاسبات والذكاء الإصطناعي

Linear Search Algorithm (or Sequential Search)

Example 2

ALGORITHM 2 The Linear Search Algorithm.

x	i	n
8	4	3

procedure linear search(x: integer, $a_{1}, a_{2}, \ldots, a_{n}$: distinct integers)
$i:=1$
while ($i \leq n$ and $x \neq a_{i}$)
False $i=i+1$
if $i \leq n$ then
else location :=0
$i=\quad 1$
3
\Longrightarrow return location $\{$ location is the subscript of the term that equals x, or is 0 if x is not found $\}$ 0

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MEDsGgZIMVY
Lectures \#4: $\frac{\mathrm{https}: / / \text { www.youtube.com/watch?v=DE8ek2FSxWERlist=PLxlvc- }}{}$ MEDsGgZMMVYOCEtUHUmFUquLjwzסindex=13
https://www.youtube.com/watch?v=S7ijhBH UU88:list=PLxlvc- Up to time 00:05:57 MEDsEqZIMVYDEEtUHUmfUquLjwZDindex=14
https://www.youtube.com/watch?v=WL7RW5EVaBw\&list=PLxlvcMEDsEqZIMVYDEEtUHUmfUquLjwZOindex=15
https://www.youtube.com/watch?v=MFRVtZzwfDYElist=PLxlvcMEDsEqZIMVYOEEtUHJmfUquLjwzZindex=IG
https://www.youtube.com/watch?v=A4dq|rVwcF48list=PLxlvcMEDsEqZIMVYCDEtUHJmfUquLjwZDindex=17
https://www.youtube.com/watch?v=|sp31HDAJWQ\&Ilist=PLxlvcMEDsEqZIMVYODEtUHUmfUquLjwZOindex=18
https://www.youtube.com/watch?v=M3|RDX|WPYMC्Clist=PLx|vc-
MEDsGgZIMVYOCEtUHUmfUquCjwzסindex=1日

Thank You

Dr. Ahmed Hagag
ahagag@fri.bu.edu.eg

